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We consider a large number of particles on a one-dimensional lattice 1Z in 
interaction with a heat particle; the latter is located on the bond linking the 
position of the particle to the point to which it jumps. The energy of a single 
particle is given by a potential V(x), x �9 Z. In the continuum limit, the classical 
version leads to Brownian motion with drift. A quantum version leads to a local 
drift velocity which is independent of the applied force. Both these models obey 
Einstein's relation between drift, diffusion, and applied force. The system obeys 
the first and second laws of thermodynamics, with the time evolution given by 
a pair of coupled non linear heat equations, one for the density of the Brownian 
particles and one for the heat occupation number; the equation for a tagged 
Brownian particle can be written as a stochastic differential equation. 

KEY WORDS:  Brownian motion; nonlinear; fluctuation-dissipation; entropy; 
stochastic differential equation. 

1. I N T R O D U C T I O N  

Einstein m introduced the mathematical theory of Brownian motion by 
means of the heat equation. Actually, for consistency he should have con- 
sidered the heat equation with drift, which in one dimension takes the form 

ef o : f  aT 
ot  = K ~xZ + v ~xx (1) 

Here, f(x,  t) is the probability density that the particle is at x at time r 
From this we deduce that v is the mean velocity. The equation was derived 
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by considering a spherical particle, having reached its terminal speed, 
moving in a frictional medium under a constant force F. He showed that 
the parameters of the model are related by 

KF 
v = ( 2 )  

k~T 

where kB is Boltzmann's constant and T is the temperature of the medium; 
Eq. (2) was the world's first fluctuation-dissipation theorem. This theory 
does not describe the initial stages of the motion, before the particle has 
speeded up or slowed down to its terminal velocity; nor  does it take into 
account the work done on the particle by the applied force. When the 
particle moves at a steady speed all this work ought to be converted into 
heat, but the presumed infinite size of the system and the presumed rapid 
dissipation of this heat tempts one to disregard local increases in 
temperature. To take these details into account needs a more microscopic 
description. 

In this paper we apply the methods of statistical dynamics (z) to these 
problems. Statistical dynamics is a generalization of Hamiltonian dynamics 
designed to obey the first and second laws of thermodynamics. In isother- 
mal dynamics the system is maintained at a constant temperature, either by 
controlled heat flows at the boundary, or by postulating that the conduc- 
tivity is infinite, and the volume infinite. Einstein's model, then, is an iso- 
thermal one. If we are to keep track of local heating the temperature will 
depend on space and time, and we need to set up a model of isolated 
dynamics, in which energy is conserved. In kinetic theory, heat is ther- 
malised kinetic energy, but in statistical dynamics we lump the thermalised 
energy of photons and phonons in with the kinetic energy, and represent 
heat by one or more oscillators, called heat-particles. These we localise on 
the bonds, or edges, of the lattice (in a model with discrete space). We 
impose the hypothesis of local thermodynamic equilibrium, LTE, an idea due 
to Schwarzschild. (3) LTE assumes that all the kinetic energy is thermalised, 
and that the oscillator on each bond is in a thermal state at some beta 
(where flkBT= 1). This hypothesis is generally not true in Hamiltonian 
dynamics, in that if it is true of the initial state, it will not be true after a 
short time. The LTE-map, denoted by Q, implements the hypothesis by 
replacing the state of the oscillator on each bond by the thermal state with 
the same mean energy. This considerably simplifies the dynamics, but makes 
the reduced system nonlinear. The map Q is entropy non-decreasing, and by 
construction conserves mean energy, and so gives rise to one step in the 
dynamics which obeys both laws of thermodynamics, provided that energy- 
conservation is taken to refer to mean energy. Q replaces the state of the 
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combined system, Brownian particle and oscillator, by the product  state, 
and so forces the correlation, set up by the interaction between them, to be 
zero. If only one Brownian particle is present, we can measure the correla- 
tion experimentally by finding the the position of the particle, and then 
measuring the temperature at the same point. The correlation thus 
measured will not be zero unless there is some physical effect that spoils the 
correlation. If there is a gas of Brownian particles, and we consider the 
dynamics of a tagged particle, this effect is due to the random presence of 
the other particles; they heat up the liquid in the same way, whether or not 
we measure the position of the tagged particle. For  this reason, we consider 
that our models will describe a gas of particles rather than a single one. 
The map Q is the second step in the dynamics; the first step is given by an 
energy-conserving bistochastic map, which determines the nature of the 
model in question. 

Heat-particles under the name of caloric, or phlogiston, have not got 
a good reputation is science, and were abandonned by the middle of the 
19th Century. I think that the mistake was to insist that they be conserved 
in time; heat is not, by itself, conserved, but can be transformed into other 
forms of energy. For  this reason, we model the heat-particles by neutral 
bosons, which are readily absorbed and emitted by matter. In this way they 
become the vehicles for the transfer and dissipation of energy. 

Statistical dynamics can be formulated in classical as well as quantum 
probability. The former is a special case of the latter, in which all observ- 
ables commute; thus there is a sample space, g?, taken to be countable in 
ref. 2. The bounded random variables on g? form the algebra d of observ- 
ables, d is an abelian W*-algebra. The set of probability measures on g? 
is the state-space, Z. In quantum probability, we start with a possibly non- 
abelian W*-algebra W, and Z is taken to be the set of normal states on d .  
The dynamics (for discrete time) in either case is given by a map r: Z ~ Z 
giving the change in the state in one time-step, say from time t to time 
t + 1. In the absence of time-varying external fields, ~ is independent of 
time. We write the action of T on the right, so that each initial state p ~ Z 
defines an orbit 

P, Pz, pv2,... 

We require that this law of dynamics obeys the first and second laws of 
thermodynamics. This is achieved by constructing ~ as the composition of 
two maps, each obeying both laws. The first stage is a bistochastic map 
T: d ~ d ,  which certainly does not decrease the Shannon-von Neumann 
entropy of a state, and so obeys the second law. To express the first law we 
must specify the total energy of the system, including heat. In classical 
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probability, the energy is a random variable g:  g2 ~ R; this divides g2 into 
energy shells 

C2 = U ~ e ,  where g2e= {coeg2: g ( c o ) = E }  (3) 
E 

Then T is said to conserve energy if T maps the indicator function of g2 E 
to itself, for each E. In the quantum case, g is a self-adjoint operator and 
T is said to conserve energy if it maps each spectral resolution of T to itself. 
A simple example of such an operator is conjugation by the scattering 
operator  of the theory. In either case we immediately have the conservation 
of mean energy 

p. Tg= p.o ~ (4) 

Here, p.  X denotes the expectation of the observable X in the state p. 
The second stage of the map v is where the LTE-map enters; it is a 

projection, or reduction, Q, which increases entropy, while conserving 
mean energy. Generally, Q can be identified as the map which, given the 
state p, replaces it by the reduced state pQ, the state of maximum entropy 
subject to the condition that the means of all "slow variables" are the same 
in the state p as in the state pQ. This is described in refs. 2, 4, and 5. Our 
slow variables are the same as the "gross variables" of ref. 6. The energy 
must be chosen to be one of the slow variables; in this paper, any function 
of the position operator of the Brownian particle will be taken to be slow, 
as well as the energy of each heat-particle. Other variables, such as the 
correlations of the particle with the heat, are not slow variables. With this 
choice, the map Q coincides with the LTE-map. We replace the hypothesis 
of local thermodynamic equilibrium by the LTE-map: just do it. 

In the next section we give the classical version of the Brownian 
particle on a lattice in a potental V(x), in which the work done by the 
potential reappears as heat. We get a generalisation of the heat equation 
with drift when we take a scaled continuum limit. The model obeys Einstein's 
relation Eq. (1) when the temperature is constant. In Section 3 we give a 
quantum model, in which the dynamics is derived from a plausible scattering 
operator. In Section 4 we compute the local changes to the betas caused by 
the thermalisation of the work done by the potential. We arrive at a coupled 
system of non-linear equations for which the energy is conserved and the 
entropy increases. The equation for the Brownian particle generates a 
stochastic process which obeys a non-linear stochastic differential equation 
driven by a Gausssian process. We claim that this is the equation obeyed by 
the tagged Brownian particle. 
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2. T H E  C L A S S I C A L  B R O W N I A N  P A R T I C L E  

We consider a tagged particle (one taken from the cloud of particles) 
moving at its terminal velocity on a lattice A = lZ in a potential V(x), 
x e A. Here 1 is the distance between the points of A. The probability that 
the particle is at x E A is interpreted as being proportional to the density 
of particles at the site. There is no kinetic energy attached to the particle; 
we describe this as saying that the particle is already moving at its terminal 
velocity, and that its kinetic energy, other than this constant amount, is 
fully thermalised; this thermal energy is shared with the medium and the 
electromagnetic field, and is accounted for by the heat-particle. Following 
ref. 2 we shall denote objects associated with the particle by the subscript 
c, denoting chemical, and those associated with heat will get the subscript 
y, for photon. We aim to arrange things so that the energy gained by the 
particle from the potential is all converted into heat which is deposited 
locally. 

The sample space of the tagged particle i s /2  c = Z, so a configuration 
co c ~ ,(2 c is given by specifying the position x of the particle. Its energy when 
at x is ~ ( x ) =  V(x). The heat-particles are harmonic oscillators, one sitting 
on each bond or link, bx = (x, x, + l), with sample space 

a x= {0, 1, 2,...} 

where nx e s specifies the number of quanta present. The energy at the 
bond b~ is that of an oscillator of frequency Vx: 

~x=2nhvxnx (5) 

The total configuration of the thermal energy is described by the double 
sequence {n} = { .... n_ l ,  no, nl ..... n ..... } in the sample space 

f2y = [ I  s (6) 
x 

and the total energy of the system, particle plus heat, is the random 
variable 

g(coc, cov)=g(x; {n})=gc(x)+gy({n})= V(x)+ ~ 2zehvxnx (7) 
x E A  

We see that this might be unbounded, and may not be finite for some con- 
figurations with an infinite total number of heat-particles. Nevertheless we 
shall be able to define an energy-conserving dynamical law on the space of 
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regular measures (those for which the measure of  any open set is the limit 
of the measures of any increasing family of finite sets inside it). 

To construct an energy-conserving bistochastic map  T, we allow 
that the Brownian particle, when at x + l, can move to x, gaining energy 
V(x + l ) -  V(x); we take it that this is positive. This energy is converted 
into heat rather than kinetic energy. The simplest model is to assume that 
that this occurs by the creation of one quantum on the link b~. For  this 
process to conserve energy, we need 

V(x + l) - V(x) = 2nhvx (8) 

If  the particle is at x this transition can be reversed, provided that nx > 0; 
the particle jumps from x to x + I, absorbing one quantum from the link 
bx. Suppose that in one time-step dt the jump x ~ x § l occurs with prob-  
ability 2 (nx)=  2~(n~)dr, independent of the state of  the system outside the 
bond b~. Since the jump cannot occur without absorbing a quantum, we 
see that 2 ( 0 ) =  0. Microscopic reversibility is achieved by the requirement 
that the transitions x + l ~ x and x - ~  x + l have equal probability. The 
state with the particle at x, and with given occupation {ny}y~A is then 
linked to only two states, and the transition is given by the infinite sym- 
metric stochastic matrix T: 

r I 09 2 U) 3 

~ol [ / l - - 2 ( n x  t + l ) - - 2 ( n ~ _ 2 / + l )  2(nx / + l )  0 

~o z [ 2(n,. / + l )  1--2(n X i + l ) - - 2 ( n x )  2(nx) / 
0~3 k 0 2(n x) 1 -- 2(n ~) -- 2(n ~ + t) / 

(9) 

The notation is to mean that when the matrix indicates a transition to a 
state with occupation number  - 1  then the entry in the matrix is taken to 
be zero. This can be achieved if 2(0) = 0. The rows and columns are labelled 
by states oJi, i = 1, 2, 3; here, oJ l is the point of g2 with the Brownian particle 
at x - l, the occupation of the bond bx ~ equal to nx ~ + 1, and all the other 
bonds by occupied by ny heat-particles; co 2 is the point with the particle at x 
and all the bonds by occupied by ny heat-particles; co 3 is the point with the 
Brownian particle at x + l, the bond bx occupied by nx - 1 heat-particles and 
all the other bonds by occupied by ny heat-particles, thus: 

~ l = ( x - l ; n : ,  l +  1, nx, n~+t,...) 

co2=(x; n .... l, nx, nx +t,...) 

c o 3 = ( x + l ; n x  l, nx--  1, nx+l,...) 
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Thus in one time-step the dynamics of the probability measures is given by: 

p'(co2) = 2(nx_,+ 1) p(co,)+(1 - 2 ( n x  ,+  1 ) -  2(nx) ) p(o92) + 2(nx) p(co3) 

(10) 

or in more detail, 

p'(x; {ny} )=2(n~_l+ l) p(x- - l ;nx  l+ l ,n  ..... )+(1--2(nx_l+ l) 

--2(nx)) p(x; {ny})+ 2(nx) p(x+l;nx_, ,nx--1, . . . )  (11) 

The choice of this form for the operator T is not forced on us; in the first 
place, we could allow x to jump by more than a distance/, or for the num- 
ber of heat quanta to change by more than one at a time; secondly, 2 could 
depend on x or on V(x). 

In statistical dynamics, one time-step is implemented by applying the 
transpose matrix T d =  T, followed by the thermalising map Q. To find Q 
in our case, we must identify the slow variables; then Q replaces p' by the 
state of maximum entropy, subject to having the same mean for all the 
slow variables. The slow variables are chosen to be the vector space 
spanned by any function of x, and the energies C~. of all the bonds. Let Jg, 
be the marginal map onto the states of the algebra ~ generated by the 
bounded random variables on g2c, and let J/~. be the marginal map for the 
algebra ~r The action of Q is then to replace p' by 

p' Q= J//,p' | @ sy,/~. (12) 
Y 

here, Sy. l~y is the canonical state 

Sy, py = Z l~yl e -  /~/% (13) 

with the same mean for the bond-energy (=hea t )  at by as the state p' and 
therefore also as the marginal state ~yyp'. Since Q has just been applied at 
time t - 1 the state p at time t is a product state of the form 

p(x; { ny} ) = p(x) | Sy./~y (14) 

This is called the hypothesis of LTE, combined with the Boltzmann's 
stosszahlansatz. In our model it is not a hypothesis, but part of the con- 
struction. The usual hypothesis is that the state p'Q is close to p', which is 
not true in our model, because the needed thermalising forces have been 
left out, to be replaced by the map Q. In statistical dynamics the hypothesis 
really takes the form that the resulting dynamics is a good model for 
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describing a tagged particle moving in a dense liquid containing many such 
particles; this is ultimately an experimental question. 

The marginal distribution, p(x), describing the position of the Brownian 
particle, is given by 

p ( x ) = ~ p ( x ; { n y } )  (15) 

where the sum is over all configurations {ny} of all the heat-particles. So 
after one time-step the distribution is 

p ' ( x ) = ~ , p ' ( x ; { n y } )  

= Z p ( x l  l; nx]l  + ~, n ..... ) ~(?Ix_,-~- 1 ) - ~ - ~ p ( x ;  {F/y}) 

-- Z 2(nx_,  + 1) p(x;  nx_, ,  n ..... ) -- Z 2(nx) p(x;  {ny} ) 

+ ~ 2(nx) p(x  + l, nx-1, nx -- 1,...) (16) 

Let 

2(y) = ~ Sy,&,(ny) )],(ny) 
ny>~O 

= ~, sy,~y(ny) 2(ny) 
ny~> 1 

since 2(0)= O. Then doing the sums in Eq. (10) gives 

(17) 

p'(x)  = ~(x - l) p (x  - l) + p(x)  

- 2 ( x - l )  exp flx_l( V ( x ) -  V ( x - l ) )  p(x)  

- 2(x) p(x)  + p (x  + l) 2(x) exp fix( V(x + l) - V(x)) (18) 

This map gives one step of a Markov process; the coefficients )T depend on 
space and time through their dependence on sx(nx) which, in isolated 
dynamics, themselves depend on time. In the thermal state of an oscillator 
at beta fl, the quantum of energy is related to the mean occupation number 
~(x) by 

l(x) = (e  z~&h~x- 1) (19) 
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We may use this to eliminate the Boltzmann factors from Eq. (18) to get 

p(x, t + d t ) -  p(x, t)= 21(x, t)(p(x + l, t ) -  p(x, t)) 
dt 

- 21(x - l, t)(p(x, t) -- p(x - l, t)) 

+ ~i-l(x) ~-l(x) p(x+l ,  t) 

- - ~ - l ( x - l )  ~q(x - l )  p(x, t) (20) 

Here, ,~ dt = )~. Let us take the simple case when 

21(0)=0, 2~(n)=2o, if n ~ l  (21) 

then 

2(x)= ~, sx, ax(n)=2oe pxtV'~x)=2o~(x)(l +~(x))-' 
n>~l 

Then the equation becomes 

~t  ( p(x) =20 ( p ( x + l ) - p ( x ) ) - ( p ( x ) - p ( x - l ) ) q  1 +~(x) 
p ( x -  l) 

l + a ( x -  1)) 

(22) 

The occupation number ~i is time-dependent, and obeys a non-linear heat 
equation with a source provided by the work done by the Brownian 
particle's potential. The resulting coupled equations obey both laws of 
thermodynamics. This is derived in Section 4. The microscopic dynamics of 
the classical particle, in which we choose 2~(n) as in Eq. (21) is similar to 
the choice made in ref. 7, which leads to activity-led equations. If we choose 
another natural function for 2, namely 2~(n)=n20 then we get a result 
similar to that in quantum field theory, including Einstein's stimulated 
emission. To have an interpretation as a discrete stochastic process, 
however, requires an ultraviolet cut-off, since n20 dt becomes greater than 
1 for large n. We shall treat this case in quantum mechanics in Section 3, 
where we shall find that the discrete-time theory is well defined. The inter- 
esting non-linearity of the dynamics, described in Section 4, comes from the 
response of the medium to the presence of the gas of particles, when we 
treat the total system as isolated. In the usual theory (of Smoluchowski), 
under isothermal conditions, there is no dynamics for ~(x), and therefore 
none for beta, as it is supposed to be fixed from outside. 



456 Streater 

3. T H E  Q U A N T U M  B R O W N I A N  P A R T I C L E  

In this model the physical space is the same as in the classical case, 
A - - I Z .  The tagged particle moves on the lattice A, and so a pure state is 
described by a wave-function ~, e 12(Z). The energy Hc of the Brownian 
particle is purely potential, and so is described by the multiplication 
operator Mv:  

( H c ~ k ) ( x ) = ( M v O ) ( x ) = V ( x ) l p ( x ) ,  x = l z ,  z e Z ,  O e l  2 (23) 

We place an oscillator on the bond bx = (x, x + l) of energy 

2~hvx = V (x  + 1) - V (x )  (24) 

This is designed so that one quantum is enough to supply t h e  energy 
needed to send the particle up one step of the ladder, if V(x + l) > V(x), 
which we assume from now on. The Hilbert space of the bond b x is thus 
the Fock space ~ =/2(N) .  The energy is 

Hy(x) = 2zehvxa* ax (25) 

where a* and a x are the creation and annihilation operators on ~x. The 
total heat energy is then 

H~= ~ 2rchvxa* a x (26) 
x ~  - - o : 3  

At first, this makes sense only on the incomplete infinite tensor product  
space 

o o  

| 
x ~  o o  

where f2 is the product  of vacuum states. However, Hr generates a well- 
defined automorphism of the C*-algebra defined by infinitely many 
oscillators; for example we could take Segal's C*-algebra, (8) or the quasilo- 
cal version. (9) Then the definition of the time-evolution is purely algebraic, 
the same in all states. We shall need a relatively tractable class of states, 
such as occur when /2  is the product  of thermal states at various betas. 

The oscillator on the bond bx = (x, x +  l) represents the thermalised 
phonons, the photons in the black-body radiation, as well as the ther- 
malised kinetic energy of the Brownian particle. This confluence of roles 
expresses the adage that "there is only one kind of heat." We could imagine 
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that the falling particle could excite more than one mode of the elec- 
tromagnetic field, but for simplicity we shall assume that only one 
oscillator is coupled to the Brownian particle on each bond. We cannot 
localise very soft photons in the interval (x, x + l), and on the other hand 
a very hard photon cannot be produced by the limited energy V(x + l ) -  
V(x). The mean kinetic energy of the Brownian particle is also constrained 
by Heisenberg's uncertainty relation. So in the quantum model we cannot 
take the limit l ~ 0 in the literal sense and still get a realistic model; indeed 
the time interval is supposed to be large compared with the microscopic 
interaction time. Nevertheless, it is mathematically convenient to consider 
the limit, since l is very small; we shall then arrive at the quantum analogue 
of Brownian motion with drift. 

We take the algebra of the Brownian particle and the heat to be 

d = d c |  (27) 

here, dc is the set of all bounded operators on/2(Z) .  The ambiguity of the 
C*-tensor product is resolved by choosing it to be the inductive limit of the 
spatial products of ~ .  with dye, the W* closed algebra of the Schr6dinger 
representation of n oscillators, localised in a finite subset of A; it is thus a 
quasilocal algebra in the sense of Haag/9) Our next task is to choose a 
Hermitian operator T commuting with the total energy which causes the 
desired transition. We want a state on d of the form 

I / I c |174  l,x 

to make a transition to 

(28) 

6x+,| (29) 

and vice versa; here, 6x is the wavefunction which is 1 at x and zero else- 
where, and ~bn, x is a state on ~r with n quanta present on the bond bx, Let 

x= E Xex (30) 
xelZ 

be the spectral resolution of the position operator X of the Brownian par- 
ticle, and let U be the translation operator by one step on A; then 

(U~gc)(x)=~c(x-l), I]Q ~/2(A) which means Ufx=fx+t(31) 

Let 2, the transition rate, be real, and define 

Tx=2{ UPx| + U*Px+l| (32) 
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This is Hermitian, since 

( UPO* = P* U* = U*Px +I (33) 

Since UP~ is bounded, Tx has a dense set of analytic vectors in the space 
12(A) | ~ ,  and T x is esentially self-adjoint on this set. The heat-energy at 
bond by, with y ~ x, commutes with T~; the remaining energy near x, 

Hx = Hc | 1 + 1 | Hy(x) = M y |  1 + 1 | 2rchvxa* ax (34) 

is also self-adjoint on its domain. We now show that it commutes with Tx. 

Theorem 35. ITs, Hx] =0. 

Proof. 

[ Tx, M y @  1] = 2 [  UP~| + U*Px + , @ a * , M v |  1] 

= 2 [  U, My]  Px Q a~ + 2 [  U*, My]  Px + z| 

Now 

ETa, H~] = ETa, H~(x)] 

2rch2{ UPxvx[ ax, a*ax] + * * = U P x + l v ~ [ a x ,  a*xax]} 

= 2rch2{ UP~vxa ~ - U*Px + iVxa*} 

Thus the theorem is proved if, on 12(A), we have 

[ U, My]  Px = -2zchvx UP:, and [ U*, M y ]  Px+t = 2zchvx U*Px+I 

For the first, it is enough to apply it to 8x: 

( UMv--  M v U )  ex6~ = (V(x) - V(x + 1)) 6x+t = -2zchvx UPx6x 

For the second it is enough to check it on fix+t: 

U*MvPx+16x +l= M v U * P x  +lfx +l= V(x + l) f i x -  V(x) fix 

= 2~zhvx( U*P~ + t6x + 1) | 

It is clear that Tx causes the desired transitions, and that Ad exp{ itTx} 
is an automorphism of d that leaves the spectral projections of H 
pointwise fixed; the same can be said of the formal infinite sum, T = 5Zx Tx, 
whose multiple commutators with any creation operator vanishes; Ad T 
therefore defines an automorphism of d by inductive limit, which is there- 
fore the desired completely positive bistochastic map giving the linear part 
of the dynamics. 
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We shall be interested in the time evolution of X~ ~ .  under z: 

X~--~e"rXe-itT=X+ it[T, X] +(it)2/2![T, [T, X ] ]  + . . . .  zX say (36) 

The map z is linear; its dual action on the states will be denoted by r d, 
acting on the right. This is well defined for discrete time. In the continuum 
limit, we shall keep only the term of second order; this needs justification, 
since the individual terms in the expansion in Eq. (36) are unbounded. We 
call this the anti-van-Hove limit(2): we measure time on the scale of the slow 
variables, say seconds, and one time-step, t, becomes very small as it is the 
time needed for the small region of space, of size l, to relax to equilibrium 
in the fast variables. The rate, 2, of reactions per second, becomes large, in 
such a way that 22t ~ 20 which is neither zero nor infinity. Put  T O = 2-1T.  
The terms of higher order formally vanish in this limit; we shall see that, 
if we take the expectation in the thermal state, the (otherwise dominant) 
term of first order vanishes. Then the finite difference quotient becomes a 
double commutator:  

t l ( r X - X ) ~  - 2 0 [ T 0 ,  [To, X ] ]  (37) 

The double commutator  has many of the properties of the Laplacian acting 
on functions of x; it is the square of a derivation, and generates a one- 
parameter semigroup of positive maps, which are contractions in various 
n o r n a s .  

So far we have constructed the linear part of the time-step; in statisti- 
cal dynamics we follow it by the randomizing map Q. Thus if we start with 
a state p e L'(~r after one time-step we replace prd by the product  of the 
partial traces 

p w+ pzd~-+ Try(pz d) | Trc(pr d) 

Then we replace the state of the heat-particle by the thermal state @ x coyx 
with the same mean energy on each bond bx; this is the LTE map, denoted 
Qy. Suppose that at time t = 0 ,  P=Pc| Then one time-step in the 
dynamics of the state of the Brownian particle is the map 

pcw-~pc|174 zdQ~--~p'c=Tr~((pc| d) (38) 

This is linear in Pc and so has a dual acting on ~c; this gives one time-step 
of an observable, and is a stochastic map obeying detailed balance. It 
depends on time through py, whose time-evolution is given by the map 

py~--~ pc | py~--~ Trc( (p~| py) z d) Qy (39) 

822/88/1-2-31 
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We see that the map given in Eq. (39) depends on the current state p~ of 
the Brownian particle, so that the combined action on the state of d is not 
linear. This equation of motion will be studied in more detail in Section 4. 

It is shown in ref. 2, Theorem 11.8, that one time-step of X,. e ~ is 

X,.~---~o~,('c(X,.| 1)); here my= (~) o9~ (40) 
x 

We now apply this to the time-evolution of the spectral projection P~; the 
term of zeroth order is P~ and the term of first order, due to Tx, is 

p~l)= itcoy([ Tx, P~])  

= it2[ UP~a~ + * * Px] U Px+la~, 

Similarly, 

= 2( UP~a~-  * * U P~+la~) 

[T,~ ,, Px] = - 2 ( P x U a x _ , -  U*Pxa* ,) 

In the thermal state o)y = @ e)yx, the means of ay and a* are zero for 
any y, so P~) = 0 as promised. To compute the term of second order, note 
that the expectations of 

[Tx_,,  [Tx, Px] ]  and [Tx, [T~._,, Px] ]  

vanish in the state Q x o~yx; this leaves 

[ T x , [ T x ,  Px]]  22[UP~ax+ * * . U*P , . 1  = U P~+za~, U P x a ~ -  ~+Z,-xJ 

= -- 222(px +,(Nx + l ) -- P~Nx) 

and similarly, 

[T~ t[T~ 1, P x ] ] = 2 2 2 ( p x ( N ~ _ t + l ) - P x  IN~ 1) 

Note the factors N~ and N~ + 1; the latter includes Einstein's stimulated 
emisssion. (1~ The terms Ty, with y r x or x -  l, do not contribute; so 

P~) = --t2/2o)~([T~, [T~, P x ] ]  + [ T~_~, [ T~_,, P~] ] )  

= t z 2 2 ( n x ( P ~ + l - P x ) - J q x _ , ( P x -  P~ ,)+ P ~ + I - P x )  
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where r~ x = o)~x(N~). In the anti-van Hove limit, we put t,~ 2= )l o and t = dt, 
to get the equation 

a P " = 2 O ( ~ x ( P ~ + , - P ~ ) - t i x  + ( P x - P x _ , ) + ( P x + I - P ~ ) )  (41) 
Ot 

This is the "reduced dynamics" of the abelian algebra generated by the 
position operator; this algebra is mapped to itself by the time-evolution, 
and can be regarded as the space of slow variables. The dynamics is linear 
at each time-step, for given field nx; it can thus be pushed onto the dual 
space, the states. Any normal state is linear sum of the point measures 6~: 

x 

The induced action on the coefficients is the dual of the action on the ~ ,  
and therefore is the same as the action on P~; thus 

P x  

0t 
- 2o(nx(Px+,-- Px) --nx , ( P ~ - - P x - , ) + ( P x + t - - P ~ ) )  (42) 

In the further limit, dx = l--+ O, we see that 

e-/~lv' kB T:, 
nx - 1 - e /~lv' IV" (43) 

we let 2o--+ oo in such a way that 20 /=  21 remains fixed, to get the non- 
linear heat equation 

(44) 

The drift velocity is 21, and it obeys the Einstein relation Eq. (2), although 
here the terms' dependence on temperature and applied force are not  the 
same as in the classical model of Section 2. This difference is accounted for 
by the different form of the rate function 2(n) in the two models, rather 
than the quantum nature of the present model. 

4. THE T IME-EVOLUTION OF THE TEMPERATURE 

4.1. The Temperature in the Classical Case 

Let us find the dynamics of fix according to the classical model of 
Sect. 2. By the first law of thermodynamics, which holds in our models, the 
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energy lost by the Brownian particle in moving from x + 1 to x, namely 
V ( x + l ) -  V(x), assumed to be positive, must reappear as heat. The 
locality of the model ensures that this energy is deposited in the interval 
(x, x + l). The LTE-map Qy ensures that this energy is thermalised during 
the time-step, and thus becomes heat. The state of the heat-particle after 
the map Qr is thus the product of local thermal states IJx s~(n~), each 
determined by the local beta fl~ by Planck's law: 

Sx(n~) = Z - '  exp{ - 2ztfl~Vxnx} = Z - 1  exp{ -fl~( V(x  + l) - V ( x ) )  nx} 

(45) 

The thermal state Sx is determined by the current state p(~o) = p(x, {ny} ) of 
the complete system by forming the marginal distribution 

Sx(n~) = Y'. ~. p (x , {ny} )  (46) 
x ~ Z  ny:yv~x 

Recall that p(x) denotes the marginal distribution of the Brownian particle. 
The beta on the bond b~ is altered in one time-step only by the 

occupation by the Brownian particle of the sites x or x + 1. The probability 
of the configuration co-- (x  ..... nx, n~+l,...) after one time-step of the linear 
part of the dynamics is according to Eq. (11 ), 

p'(x ..... nx l, nx, nx+t , . . . )=p(x) . . . sx  l(nx t)sx(nx)Sx+t(n~+l).. .  

-2 (nx )  p (x ) . . . s~  t(n~ t)Sx(n~)Sx+t(nx+t)...  

- 2(nx_t + 1 ) p ( x ) . . .  Sx_ i(n~_ 1) s~(nx).. .  

+ 2 ( n x _ t ) p ( x - l ) . . . s x  l(nx l + l ) s ~ ( n x ) " "  

+ 2(nx) p(x  + l ) . . .  Sx_ t(nx_ 1) Sx(n~ - 1 ) . . .  

(47) 

with similar equations for p ' ( x +  l,...) and for p'(y,...), y # x ,  x +  l. After 
some tedious sums we get for the change in marginal distribution 

s'(n~) - sx(nx) = 2(nx)(p(x + l) s x ( n x -  1) - p(x)  Sx(nx)) 

- 2(nx + 1)(p(x + l) sx(nx) - p(x) sx(nx + 1)) (48) 

We can understand the four terms; the loss in probability of finding nx quanta 
on the bond bx is due to nx being reduced to n x - 1, and the Brownian par- 
ticle moving from x to x + l (the probability of this being 2(nx) p(x) sx(nx)), 
or, if the Brownian particle had been at x + l, it moves down to x, changing 
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nx to nx + 1 (the probability for this is 2(nx + 1 ) p ( x  + l) Sx(nx)). Similarly for 
the two positive terms, which contribute to a gain in Sx(nx). 

Equation (48) is the linear part of the dynamics; the L T E  map replaces 
the detailed information about the state Sx(nx) of the bond by a description 
in terms of one parameter, which can be the temperature or its inverse, 
beta. This is the canonical coordinate in the language of information 
geometry/TM Alternatively we can describe the state by the mixture coor- 
dinate, the mean energy or mean occupation number, ~i~, related to fl by 
Planck's law, Eq. (18) if s~ is a thermal state. Since we regard the local 
energy of the bond as a slow variable, the L T E - m a p  does not change the 
expectation of this energy, and we may define the state after the L T E - m a p  
as the thermal state with the same values of a~. The change in ~x in one 
time step is therefore 

n" -- nx = ~ (s ' (n~)  -- Sx(n~)) nx 
n x 

= p ( x )  ~ n x { s x ( n x +  1) 2(nx+ 1) - -Sx2(nx)}  
n x 

+ p ( x + l )  ~ n x { s x ( n x -  1) 2(nx)--sx(nx) 2(nx+ 1)} 
n x 

which reduces to 

(49) 

~J~x - 20(p(x + I) -- e -/J(v~x+l) - v(x)~(x)) (50) 
8t 

Notice that the ratio of the absorption rate to the emission rate of energy 
by the particle is the usual Boltzmann factor exp{--fl( V(x  + 1 ) -  V(X))}, 
and not proportional to lqx, as in the form of Kirchoff's law used by 
Chandrasekhar; ~ll) the discrepancy is due to hidden inclusion of the 
Einstein factor for induced emission in the emission coefficient j. This is 
clearer in ref. 12, where jv includes a term proportional to the intensity I v, 
which is proportional to ~. As a result, the coefficient Jv of Eq. (38) of 
ref. 11, p. 8, should depend on temperature, according to the factor 
( 1 - e  ~hv) ~, which cancels out a similar factor in a, leaving the 
Boltzmann factor as here. This is seen in Eq. (58) below. Our  present 
model, with the choice of 2(n) given in Eq. (21), has no induced emission, 
Chandrasekhar's form of what he calls the Kirchoff-Planck law is not 
correct in this case. It is fair to say that Kirchoff was not aware of the 
non-linear nature of the interaction of radiation with matter when he for- 
mulated his law, and that Chandrasekhar was too polite to say that it was 
wrong. 
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Combined with Eq. (22), Eq. (50) gives a system of coupled non-linear 
finite-difference equations for the fields p(x, t) and ~(x, t). There is no 
problem in showing the existence of solutions for any initial fields for which 
nx/> 0, and p(x) >1 O, summable. By construction, probability is conserved, 
energy is conserved, and entropy is non-decreasing. We could add a diffusion 
term to the equation of motion of the occupation number by modifying the 
microscopic dynamics with the addition of a hopping term. 

To take the continuum limit of Eq. (22), write 20/2 = x, the scaled diffu- 
sion constant, and kB = 1, for simplicity. Also note that ax ~ T(x, t)/lV'(x) 
and (1 +~ix) -1 ,,~lV'(x)/T(x, t) as l ~  0. Also, put f (x ,  t)=p(x, t)/l; this is 
the probability density. In the limit l ~ 0 Eq. (22) becomes 

a f  02f(x, t) ~ (V'(x) f(x, t)) (51) 
Ot = K ax ~ + K \ T(x, t) 

Let us parametrise the state of the heat-particle by the temperature. Then 
in the same limit as above, with ~.0/2 being replaced by x, we get from 
Eq. (50) the rate equation 

aT(x,_~ t) _ tc V,(x) e_/~v<x) ~__~ (ePV<x)p(x) ) (52) 

Now we see a difficulty; we want to get a coupled system of equations for 
f a n d  T, but asp(x)  = / f (x ) ,  we see that the right-hand side of Eq. (52) goes 
to zero as l ~ 0, and the temperature does not appear to change. This 
defeats the purpose of the model, which was to rectify the (finite) loss of 
energy by the gas of Brownian particles by a gain in the temperature. The 
reason for this is that as l ~ 0 the number of oscillators per unit length, l 1, 
becomes infinite and so does the specific heat C = k~/l of the system; since 
the energy-change is finite, the change in temperature must be infinitesimal 
in order to conserve energy. The way out is to replace p(x) in Eq. (52), not 
by / f  but by f/C, and to regard C as experimentally given; for simplicity, 
and to be consistent with the way we took the limit of Eq. (22) we take 
it to be independent of x and temperature. Thus our final equation for 
T is 

/ V'(x) ,.~ O ) 
~-at 7~(x' t)=KV'(x) c - '  ~ ~-~, to j~x, t)+uxf(x, t) (53) 

We can add a term of second order to this if we like, to represent heat 
conduction. 
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We now get expressions for the energy and entropy of the total system 
in the limit as l--* O. The energy is given by 

E ( t ) = ~ p ( x ,  t) l lV(x) l+~ lV '~ (x ,  t) 
x x 

,,~ f f (x ,  t) V(x) dx + C f T(x, t) dx (54) 

and the entropy is given by 

S(t) = - Z  p(x, t) log p(x, t) - ~ ~ Sx, ,(n~) log(sx, ,(n~)) 
x x n x 

~ - f f ( x , t )  l o g f ( x , t ) d x + C f l o g T ( x , t ) d x  (55) 

(omitting some infinite time-independent terms and terms of smaller order 
in 1). Let us assume that at each time, f a n d f '  vanish at infinity. One then 
checks easily that E is conserved in time and that 

- -  = x f ( x ,  t )  + dx >>. 0 (56) 
dt ax '( ,  )J 

We have thus successfully modified the classical theory of Brownian 
motion to conform with the first and second laws of thermodynamics. 

4.2. The  T e m p e r a t u r e  in t h e  Q u a n t u m  Case 

The equation of motion of the number density in the quantum model 
of a Brownian particle given in Section 3 is easy to find. Since we are to 
find the expectation value in a thermal state, the term of first order in 
Eq. (36), it[T, Nx], vanishes. Since the model is local, the double com- 
mutator [ T, [ T, Nx] ] uses only Tx, and we get 

[T, [T, Nx]] = 2[ Tx, { UPxax-  U*Px+,a*} ] 

= - 222[ UPxax, U*Px + ta*] 

= -- 222 { UPx U*Px +,axa*- U*Px +, UPx a*ax} 

= -222{px+,axa * -  Pxa*a~} 

so that the second-order term of the equation for the number operator is 

N ' - N x =  -te22/2[T, [T, N~]] =t222{P~+,axa*-P~a*a~} (57) 
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Taking the expectation value in the state p | I-Ix sx, in which the term of 
first order vanishes, gives 

dnx 
at = 40{ px +, (ax + 1) - pxex}  (58) 

Combined with Eq. (42), this gives an infinite set of coupled non-linear 
differential equations for the time evolution of the fields p(x, t) and fix. t; let 
us suppose that we have a solution. By construction this defines an orbit 
through the state space of density matrices of the total system, such that 
mean energy is conserved and entropy is non-decreasing. 

Now let us take the continuum limit in the same way as we did to get 
Eq. (44), namely, put 21 = 120, and use KxlV' ~ T; then we get 

dt = (Px+,-Px)+Px+l  (59) 

which in the limit l ~ 0 gives 

dT 
= 2,( Tp' + p V') (60) 

This suffers from the same problem as the classical model, namely, the 
specific heat becomes infinite as l --* 0; as there, we replace p by f/C. This 
leads to the equation for the temperature 

c OT(x' t---) - 21(T(x '  t) ~ + V'(x' t) f (x '  t) (61) 

Again, this equation of motion coupled with Eq. (44) written for f instead 
of p, leads to the conservation of energy, and the non-decrease of entropy; 
these are defined as for the classical model, by Eqs. (54) and (55). Indeed, 
we find 

S=21f g~f l/Tf, )2 1 dx> o 

It is natural to add a diffusion term, unrelated to the parameter 21, due to 
direct hopping of quanta from bond to bond at rate x 1 to the right-hand 
side, giving a heat equation with source: 

c O T  c32T ^ 
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The diffusion term contributes a positive amount to S, unless T is inde- 
pendent of x. From this, for a state to be stationary requires 

 rf' = - j o e '  

where f and T are independent of time, and T is independent of x; this can 
only occur if f is a Gibbs state at temperature T relative to the potential 
V(x). This is not always possible, since we also require f to have finite 
Ll-norm. 

Similarly, the coupled equations where the heat capacity C is any 
positive function of x and T also lead to the first and second laws. 

5. C O N C L U S I O N  A N D  O U T L O O K  

In this paper we have succeeded in modifying the heat equation with 
drift so that the resulting non-linear system obeys the first and second laws 
of thermodynamics. Two models were studied, called the classical and the 
quantum model respectively, in which the gas of Brownian particles moves 
in one dimension in a potential V(x). The state is described by a particle 
density f and a temperature field T, both varying in space and time. The 
equations of motion are given by 

~ = X ~ x Z + X ~ x  x (62) 

cot= , ( v ' s + o s )  
cgt xl-~xz +Xg (63) \ T axJ 

8f ~c~ CTc3f'~+~} (64) 
N ='q tOx\V'Ox) 

c3T ~32T 
C-~=~cI-~x2 + 21(T~+ V'f ) (65) 

In either case the energy and entropy are given by 

E= f f(x, t) V(x) dx + C f T(x, t) dx (66) 

S( t )=- f  f(x,t)logf(x,t)dx+Cf logT(x,t)dx (67) 

These are obtained from the discrete microscopic theory by a suitable limit, 
dropping some infinite time-independent terms. The first and second laws 
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are expressed by the time-independence of E, and the increasing nature of 
S(t). 

It is not difficult to generalise these models to several dimensions, and 
to cases where the specific heat C and the diffusion constant ~ depend on 
position and temperature; we just have to make different choices for the 
variation of the density of the oscillators with temperature, and for the 
transition probability 2(n). The models thus obtained will also satisfy both 
laws. 

It remains to prove the existence of global solutions in L ~ for given 
nonnegative initial conditions, and to show the expected positivity of the 
solutions. The classical version is quasilinear, and we have succeeded (~4) in 
showing that solutions exist for small times if the initial temperature is 
strictly positive, and the domain (in R n) has no boundaries. Some assump- 
tions on the potential V, and on the initial state, are needed. The existence 
of solutions in other domains, with self adjoint boundary conditions on the 
Laplacian, is still an open problem. The quantum equation is fully non- 
linear, and the existence of evolutions, even for small times, is still open. 

The slow variables of the microscopic models includes all the 
measurable functions of the Brownian particle; this enables us to set up, 
before the continuum limit is taken, a "non-linear stochastic process" in 
discrete time and space, which will describe the statistics of a tagged par- 
ticle. We first give the initial distribution p and the beta fields at each site, 
and then solve for p(x, t) and n(b~, t). We can then guide the stochastic 
process by the solution, and construct a process whose density at time t is 
p(x, t). This is described in ref. 2, pp. 255 and 256, and in more detail in 
ref. 4 and 5. The point is that when the slow variables form an algebra, 
then the Heisenberg dynamics obtained as the dual to the flow through the 
states is a positive map, and so defines a process. A new problem then 
arises: once we have solutions f (x ,  t) and T(x, t) of our equations, (which 
we have, for small times, in the classical case) we can construct an 
associated stochastic process for the position of the tagged particle 

dX~ = (2/r 1/2 dB, + T l(x, t) V'(x) dt (68) 

The interpretation of such a process poses interesting further questions. 
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